STEP III, 2004 Hints and Solutions

Section A: Pure Mathematics

The substitution u = cosh z should suggest itself (because of the factor of g—qf =sginhz in t

x
numerator), and the resulting integral can be tackled by splitting the integrand into part
fractions:

a sinh cosha du 1 cosha 1 1
o 2cosh®z—1 1 -1 2/, V2u—1 V2u+1
1 cosha 1 v2cosha — 1 V2 +1 )
= ——|In(v2u—1)—In (V2 +1] = In +ln| —=——
2\/5[ ( ) ( b )1 22 V2cosha +1 " V2 -1 )
Similarly, substituting « = sinhx, and then recognising an arctan integral:

¢  coshz sinha 4, 1 sinha 1 .
/o 1+ 2sinh?z dm - /0 1+2u2 2 [arctan (\/iu)] o T/ arctan (\/5 sinh a)

To show that

/wcoshm—sinh:v . T 1 In V2+1
o 1+2sinb’z 2v/2 2v2 \v2-1/"

note that
a cosh?z =sinh®z +1, so 2cosh®z —1=1+2 sinh? z, and the integral required is t

second minus the first of those calculated earlier, as a — oo.

T
b  asa— oo, sinha — oo, so arctan (\/§ sinh a) )

c as a — 00, cosha — 00, so

v2cosha — 1 V2cosha —1
-  ~ 3landln|{ ——1] -0
V2cosha + 1 V2cosha+1

1 1
Substituting u© = €%, so that coshz = -;— (u + E) and sinhz = % (u — —):

U+ —
u

1) ( 1)

00 al oo( - (e o]

/ coshz smh:rdx:/ u lduz/ 2 4du
0 1 1 1+U

. 2 1
1+ 2sinh®z 1+—%(u2—2+—2> u
U

so/m—l———du— T__ ! In V21
T+t T 42 42 \V2-1)
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(1)

(iii)

Inspection of the denominator shows that the vertical asymptotes are at z = 0, z =4,
and the third term in f(z) tends to zero as |z| — o0, so the oblique asymptote is just
y=x—4.

, 16 (2z + 1)* )
The oblique asymptote meets the curve when m— =0or (2z +1)° =0, hence
there is a double root at z = —% and hence the asymptote touches rather than crosses

the curve at (—3,—3), so is a tangent there.

f(z) = 0 when z%(z — 4)% — 16(2z 4 1)?2 = 0.
The left hand side of this equation is a difference of two squares, so factorises to give

(z(z — 4) — 4(2z + 1)) (z(z — 4) + 4(2z + 1)) = 0; that is, (z? — 12z — 4) (z + 2)% =0,
which has a double root at r = —2.

On your sketch you should show:
the double root at (—2,0) — the curve has a local maximum here and touches the x-axis;
the remaining roots (solutions of z2 — 12z — 4 = 0) at = = 6 & 2/10;

the curve approaching the oblique asymptote y = z —4 from below as £ — oo, approach-
ing it from above as £ — —oo and touching it at (-3, —3);

f(z) — oo as z — 0 from above or below, f(z) — 400 as £ — 4 from below and
f(x) — —o0 as x — 4 from above;

local minima at some z value with 0 < z < 4 and with y > 0 and at some z value with
-2<z< —% and with —g— > y > x — 4 — note that this second minimum is not at the
point of tangency with the oblique asymptote.
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The sketch should show a curve with increasing gradient: because the gradient is increasing,
the curve lies below the chord joining (a,f(a)) and (b,f(b)) and above the tangent to the
a+b N +b

2 7 ( 2
the area of the trapezium cut off by the chord and the lines z = a, £ = b and y = 0,
which is (b — a)w

of the trapezium cut off by the tangent and the lines £ = a, * = b and y = 0, which is

. The illustration is clearer if f(z) > 0 for a < z < b: then

curve at

, is larger than the area represented by the integral and the area
b
(b—a)f (2—;;—) , is smaller than the area represented by the integral.

Choose f(z) = —1——, checking that this has f”(z) > 0, a =n — 1 and b = n to get the quoted
22

result.

Take the sum from n = 2 to oo of each term in the inequality: the left hand sum is directly as
quoted; in the middle sum, you need to notice that it telescopes, so that all the terms except
the first cancel in pairs; in the right hand sum, each reciprocal square occurs twice, cancelling
the factor of %, except the first.

For the next part, observe that 1 < ! so1 1+ ! <1 1+1 -2
or eXxt part, ('I’L+1)2 77,2’ 2 n2 (n+1)2 2\ n2 = .

Finally, combine the two previous results to get

7] (=AU A P P L R
327 42 52 2 T2

o0
1 1 1
so that if S = nZ::I 7 then 2 (S -1- 52—) <l<S-— 5; rearranging these inequalities gives
the required bounds on S.
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T
If circle n has centre O, then 00, = ——,
sin o

Tn+1
OO0 41 = Si"n*a and OO0, — OO0, 41 = Ty + Ty

Substituting and multiplying by sin « gives 7, — rp41 = sina(r, + r,41) which simplifies to
the required result.

1 —sina

n
This result then implies that r, = ( ) rg, so the total area is

1+sina
2 ‘ 2

S—-l 2 1 —sina . 2+7r 1 —sina 2r o 1 -sina 3r +

__27WO T 1+ sina 0 1+sina 0 1+ sina 0

. . 2
L . . . . (1—sina
which is almost a geometric series with common ratio { ————— | , so

l+sina
2 )2 2
r 1 (I+sina)® 1 1+ sin® a
S = 0 i (EEsma)T 1) o lTSITA 9
o ( 4sina 2) . dsina 0

1 1 —sina 22
1+sina

Area T of triangle OAB = 1LAB x 00g = —2 "0
cos o sin a
so s =T cosa (1+ sin2a) =T cosa (2- cos? a)
T 4 4 ’

: - . S .
By differentiation, the maximum T occurs where 2 — 3cos?a = 0 (not sina = 0) and equals

T 20y 2 ._z¢2>\/§_,/1§> /16 _4
4V 3 3/ 3V3 3 V24 25 5
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5 If cos(z — a) = cosfB then z — o = 2nr £ B so x = a £ B + 2n7 so tanz = tan(a + f5)
however, for example, z = 7, « = f = 0 has tanz = tan7 = tan0 = tan(a + () but

cos(z —a) =cosm = —1# 1 =cosf.
a  Writing cosz — 7sinz = Rcos(z — a) requires R = /50 = 5y2 and tana = —7, so
cos(z — ) = cos 3, where cos 3 = _\/—i’ so we can take tanf = 1.
tan« + tan 8 —741 3 4
Hence tanz = tan(a = = = -3 or 4,
ene * (a+5) 1—tanatanp 1+7 473
The first of these gives z = Ir+wor z = %w +w (since arctan % = § —arctan %)and the
second £ = w or £ = m +w. However, the first solution in each case does not satisfy the
original equation (both have sinz > 0, so cosz — 7sinz < 1),s0 = = %w +wormT+w.
— 2
b  proceeding as in (i), cos(z — a) = cos 3, where tana = % and R = 5v/5, so cos § = 7
2242
_ 1 _ _ 24 4
and so tan 3 = 5. Hence tanz = eI —% or 3.
' 2tanw
Notice that tan2w = Tty = -274 so the solutions are £ = w and z = 2w, again
- w
eliminating the other two possibilities, w + 7 and 2w + 7, by checking in the original
‘equation. }
6 Fo—Fn i = w2+w? | —dw,w,_y —w?_ —w?_ o w, Wy = w2 —w2_y —4wn, 1 (Wn—wn—2)

= (wp — Wn—2) (Wn + Wn-2 — dwn_1.) (+)

(i)

(i)

Let w,, be uy; then u, +up_g —4u,_1 =0,s0 F,—-F,_1 =0 forn>2,by(+),

but Fy = u? +u2 —4dujug=—-38so F,=-3 forn>1
1 0

In this part, let w, be vy,.

(a) vi4+1=4v;-3= (1 —2)2=0=>v; =2
F,=v2+ v,2,_1 —4vvp1=-3 forn>1
= Up — Un—2 = 0 O Uy + Vp_g — 4v,—1 = 0, for n > 2, by (+).

(b) Since 1,2,1,2,... satisfies vy — vp—g =0 for n > 2, F}, is constant, by (+) and
since vp = 1,v; = 2 that constant is —3, so the sequence satisfies (x).

(c) The sequence 1,2,7,2,..., with period 4, satisfies v, —vp—o =0 for odd n > 2
and v, + Up_g —4v,_1 =0 for evenn > 2, so F, is constant, by (+), and since

vp = 1,v; = 2 that constant is —3, so the sequence satisfies (x).
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t 1
On 0 < t < 1, the integrand is non-negative and 0 < 1 =1- o < %, so
1 n 1 n—1 1 n—1

t t t 1 t
Iy = —dt = —_— e dt < - 1 dt = 11,.
n+1 /0 (t+1)n+1 -/0 t+1(t+1)n <2/0 2(t+1)n 24n
Integration by parts gives

A S A 1
Ly = |———r —_——dt = ——— + I,
" [ n(t+ 1>"L +/0 n(t+1)" ngn T

1

SO In > 2In+1 = "'W -+ 2In = In < 'T-_L—é-ﬁj‘f (*)
.1 L |
Since 5; = Ir - Ir+1, Z;—z—r = (Il - Ig) -+ (I2 - 13) + ...+ (In - In+1) = Il — dn41, and

=1
| ' 21
I /(; t+1d n2, soln TEZI 7‘2"+ n+1

3 2 2
1, : . _ 1 1 I 17
Hence In2 > ;zl or =3 and, by inequality (%), In2 = r_il o +1I3< ngl o + 38 = A

If u = y? then du _ 2y£1—?i = of (z)y? + 2g(z) = 2f (z)u + 2g(x),
dz dz
which is a linear differential equation for u(z).
d
In this case, f(z) = %, g(z) = —1 so the differential equation is -(—1% = —25 - 2.

e2 Inz

. 1du 2u d(u)=";‘§

24
The integrating factor is ef 9T = = giving — — — — = —
grating 2 BV S T B T 4

2

-2 2

so that % :/sz:—_ Ztcoru=y®=ce?+ 2z
T z x

The solution curves which pass through (1, 1), (2, 2) and (4, 4) are y? + (z — 1) = 1,

y? =2z and (= + 2)% — 2y? = 4 respectively. In drawing these curves it should be made clear

that all of them pass through the origin, and that this is their only point of intersection; that

the first is a circle with centre (1, 0), the second a parabola and the third an hyperbola with
z+2

7

centre (—2,0) and asymptotes y = &
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Section B: Mechanics

Let angle AOM be 26, so APM = 6, and let R, F be the normal reaction and frictional forces
of the hoop on the mouse.

The forces on the hoop are its weight, the force on the hoop from its suspension, and the
reaction on the hoop to the forces R and F' of the hoop on the mouse. For the hoop to be
in equilibrium, the net moment of these forces about the point of suspension must be zero,
but the lines of action of the weight of the hoop, and the force on it from its suspension, pass
through the point of suspension, so have zero moment about it. Thus equilibrium of hoop
requires the net moment of the reactions to R and F' about the point of suspension of the
hoop to be zero; that is, ' x PMcosf — R x PMsinf = 0, or F' = Rtan4.

For the mouse (of mass m, say) to have constant speed u, its equations of motion are:

2
resolving radially inward, R —mg cos 20 = me and resolving tangentially, F' —mgsin26 = 0.
' a
2
Combining these three equations gives mgsin20cosf = (mg cos 20 + ﬂ) sinf which
a

reduces to u? = ag using the double angle identities.

To maintain a speed u with u? = ag requires R = mg(cos20 + 1) = 2mgcos?6 and F =
mgsin20 = 2mgcos? @ tan @ which is greater than pR if 6 exceeds arctan it and hence angle
AOM exceeds 2 arctan u, so, initially, the hoop will begin to rotate in the opposite sense to
the mouse’s motion round the circle.
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Ta — -6 4
For6a<m<7a,i=g+6g(a x)—-6g(x a)=—2(7a——x)
2a 6a a
—6
andfor?aéxéga,izg—Gg(jT—(—L—)=g(?a—x).
a a

Notice that these both describe simple harmonic motion with z = 7a as the equilibrium
position so that, for 6a < z < 7a,

4 4 4 4 4 4
x=7a+Acos‘/—gt+Bsin\/—£t and £ = — —-—!ZASin\/—-g‘t-f-\/“—g—BCOS\/—-gt
a a V a a a a

and initial conditions z = 6a,% = 0 at t = 0 then give A = —a, B =0.

/4
Let the particle pass through = 7a at t = ty; then ~gto = g and, at this point, z = /4ga.
a

For 7a < < 9a, similarly z = Ta+ A cos \/é (t—1to)+ Bsin \/—g (t—tp). The initial conditions
a
are = 7a, & = \/4ga at t = g, which give A = 0, B = 2a.

3
Finally, z = 9a When\/g(t —ty) = %; that is, when t = g, /:1% + g\/g = —471\/3'
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Since z is initially, and hence always, positive, Newton’s Law gives 227 = —— and 23 = —,
z z
. 3
so that Z = 25 — 71 = —3.
z
- . . dv 3 . . . v? 3
Writing this equation as v— = —; and integrating with respect to z, we have — = ——5 +¢
dz =z 2 222
3
so v = £ [2¢ — —5 Where the initial condition v = —1 when z = 1 requires the negative sign
z

to be chosen and c¢=2.

dz
Writing v = o and separating the variables gives

dz / / zdz 1
2= [dt or c—t= | === V42?2 -3
/ / Ak Va2—3 1
22
so that /422 — 3 = 1 — 4t, using the initial condition z = 1 at t = 0 to determine c.

Then z = 42 — 2t + 1 as required.

Defining w = z9 + 271, w = 22 + 227 = 0 so that w = a, w = at + b. Initially, 1 = 1 and
Zg=0s0a=2;x =0and 9 =1s0b=1. This gives

= (w-2) =} (2t +1- VAP - 2T T) andz = §(wt2e) = (2t + 1+ 2va =2 41).

It is worth noting, though not required by the question, that z; — %, Ty — 2 ast — oo.
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Section C: Statistics

- —1 1 1
For C}, we haveP(O):m ! andP(l):—l—,sothatE[Cl]=0><m +1x —=—and
m m m m

m
~-1 1 2 -1
Var[Cl]:<02xT——+12x~—)-(—l—> = 3
m m m m

Cov[Cy,Cy] = 12 x P(Cy = Cy = 1) — E[C1]E[C}] (since the other terms in the expectation of
1 1
C,Cy are all zero). P(C) = Cy = 1) = P(players 1 and 2 get their own shirts) = ppe———

1 1)\? 1
so COV[CI’CZ]:m_(E) ”m

E[N]=E[Ci]+E[Co)+...=m-— =1 and Var[N] = Var [C1]+Var [Cy]+. . .+Cov [C1, Co]+
Cov [Cy, C3] + Cov [Ca, C1] + ... = m - Var [C] + m(m — 1) - Cov [C,Cy] = 1.

3=

A normal approximation with mean and standard deviation both equal to 1 is not likely to be
appropriate as the approximation would give high probability to negative values of N, which
are impossible. A Poisson approximation might be reasonable as mean = variance.

There are 9 arrangements where no player wears his own shirt out of 24 permutations,while

the Poisson approximation to P(0), with mean 1, is e L,

Bl

—e! 800 2

~3%om = 102 2

The relative error is 5
24
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(i)

(iii)

P(a competitor drops out in round r) = p" (1 —p)

so P(all three drop out in round r)= (P11 - p))3,
(o]

so P(all three drop out in the same round) = P3 = Z (pr (1 - p))3
r=1

This is a geometric series with common ratio p3 and first term (1 — p)3

(1-p)°
1—p3

so Py =

The probability that a competitor survives round r — 1 is p"~1, so the probability that
a competitor drops out in round r — 1 or earlier (that is, before round r)is1—pt
Therefore the probability that two competitors drop out in round r and the third earlier
is 3 x (pr“l(l - p))2 X (1 - pr“l), where the factor of three is required, because any of
the three could be the one to drop out earliest.

From (ii), Pr(two drop out in same round and the third earlier) = P,

o o0
— 23 (pr—l(l . p))2 (1 _ pr—-l) — 3(1 _ p)2 Z (p2(r—1) _ pB(r—1)>
r=2 r=2
p’ p*
=3(1- p)2 - , summing to infinity two geometric series with first terms
1-p* 1-p®
p? and p® and common ratios p? and p® respectively.

3p (1+p?)
(1+p)(1+p+p?)’

Pr(the grand prize is awarded) = 1 — P, — P3, which simplifies to
using the factorisation 1 —p® = (1 —p)(1+p+ p?).
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The test is appropriate because, if Hy were true, Z would have a higher probability of being
in the region stated than if H; were true.

Under Hy, X has a Normal distribution with mean g and standard deviation 2 %

vn
a———P(]X——u|>c):2(1——<I><—U_CI>)
vn

& C 1 (61 C 002
80 o | T —E,SOE~ZQOTC~\/.E.
vn Vvn

Under Hy, X has a Normal distribution with mean g and standard deviation Lo

NG

- vore
,3=P(!X—-p[<c)=1——2(l—(l)(?\7c%>) _—_2@(%)_1:2@( ((z >_1’

so f is independent of n.

» 1+0.05 |
<005 = ® (”"z ) <1 gss o Z0% 0063,
o1 2 a1
a<0.05 = z,>1.960.
1.960 1. 2
For these both to hold, we must have 0.063 > I0% 70 2 960 _ 280 30.

a1 a1 or ag .063 - 9



